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Abstract Background: The Alzheimer’s Disease Neuroimaging Initiative Phase 1 (ADNI-1) is a multisite pro-
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spective study designed to examine potential cerebrospinal fluid and imaging markers of Alzheimer’s

disease (AD) and their relationship to cognitive change. The objective of this study was to provide

a global summary of the overall results and patterns of change observed in candidate markers and clin-

ical measures over the first 2 years of follow-up.

Methods: Change was summarized for 210 normal controls, 357 mild cognitive impairment, and 162

AD subjects, with baseline and at least one cognitive follow-up assessment. Repeated measures and

survival models were used to assess baseline biomarker levels as predictors. Potential for improving

clinical trials was assessed by comparison of precision of markers for capturing change in hypothetical

trial designs.

Results: The first 12 months of complete data on ADNI participants demonstrated the potential for

substantial advances in characterizing trajectories of change in a range of biomarkers and clinical out-

comes, examining their relationship and timing, and assessing the potential for improvements in clin-

ical trial design. Reduced metabolism and greater brain atrophy in the mild cognitive impairment at

baseline are associated with more rapid cognitive decline and a higher rate of conversion to AD.

Use of biomarkers as study entry criteria or as outcomes could reduce the number of participants

required for clinical trials.

Conclusions: Analyses and comparisons of ADNI data strongly support the hypothesis that measur-

able change occurs in cerebrospinal fluid, positron emission tomography, and magnetic resonance

imaging well in advance of the actual diagnosis of AD.
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1. Background

Alzheimer’s disease (AD) is the most common cause of

dementia in the elderly and a substantial burden to patients,

caregivers, and the health care system [1]. Approved treat-

ments are few and of limited efficacy, serving mostly to

slow or delay progression and not to cure the disease, despite
reparation of this article were obtained from the Alz-

roimaging Initiative (ADNI) database (www.loni.u-
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entation of ADNI and/or provided data but did not par-

writing of this report. A complete listing of ADNI in-
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significant research efforts by the National Institutes of

Health and the pharmaceutical industry. A major barrier is

that clinical disease assessment yields measures of limited

value for characterizing diagnosis and quantifying disease

progression and drug efficacy: clinical measures have sub-

stantial between- and within-person variation [2], and they
vestigators is available at www.loni.ucla.edu/ADNI/Collaboration/ADNI_

Manuscript_Citations.pdf.
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likely lag far behind the underlying pathology onset and pro-

gression [3]. Evidence to date suggests that the neurobiolog-

ical development of AD affects brain physiology and

function at multiple levels and across multiple locations. Re-

searchers have proposed several potential in vivo biomarkers

based on either fluid samples or neuroimaging, to ascertain

the current status and track the progression of AD-related

brain change. Many published articles have shown associa-

tion with disease progression for potential biomarkers;

examples include serum and cerebrospinal fluid (CSF)

markers for Ab42, tau, and phosphorylated tau (P-tau) at res-

idue 181 [4]; positron emission tomography (PET) imaging

for amyloid burden [5] and for glucose metabolism [6,7];

and structural magnetic resonance imaging (MRI) for brain

tissue volumetric changes [8].

The primary goal of the Alzheimer’s Disease Neuroimag-

ing Initiative Phase 1 (ADNI-1) was to validate and compare

biomarkers for potential use as outcome measures in clinical

trials; thus three quarters of the ADNI-1 participants were

enrolled from narrowly defined amnestic mild cognitive im-

pairment (MCI) and mild-to-moderate AD groups, and the re-

maining participants were clinically defined normal controls

(NCs) [9]. All participants had repeated clinical evaluation,

including cognitive and functional assessments, neurological

examination, and MRI, approximately every 6 months for 2

years. In addition, about half of the participants had CSF

samples at baseline and 12 months, and, independently se-

lected, about half had PET imaging for glucose metabolism.

Supplemental funding later supported PET imaging for amy-

loid burden in a subset of the cohort. Six MRI laboratories

and three PET laboratories then developed summary mea-

sures on the sequential images. This process yielded a rich,

multidimensional dataset with longitudinal data on many

candidate biomarker summaries and on multiple aspects of

clinical outcome, finally allowing the testing of many exist-

ing hypotheses about markers for AD [10,11]. This article

summarizes work of the ADNI Biostatistics Core in

preparing a global summary of the overall results and

patterns of change observed when ADNI-1 participants had

all completed at least 12 months of follow-up.
2. Methods

2.1. Study design and participants

ADNI study design and participants are described in

greater detail in other articles in this special issue. Briefly,

the study recruited 192 participants with mild-to-moderate

AD, 398 with amnestic MCI, and 229 NCs, aged 55 to 90 in-

clusive. The MRI and PET laboratories prepared summary

measures of imaging characteristics, based either on pre-

specified regions of interest (ROI) or on data-driven regions.

For the data-driven regions, a standard, pre-planned, ran-

domly chosen training set of 40% of participants, blocked

by study arm and age, was used to train the method and de-

velop the region. A separate evaluation sample of the remain-
ing 60% of participants was used to assess the performance of

the metric and for comparison with other measures. A single

laboratory carried out CSF measurement, with all samples

batched for analysis and quality control at each batch. All im-

aging summary data for statistical analysis were submitted to

the Clinical Core and transmitted, along with clinical and bio-

marker data, to the Laboratory of Neuroimaging Web site as

de-identified files.
2.2. Measures

Biomarkers from three domains were considered in the

global analysis: CSF, PET, and MRI. Baseline CSF samples

were batch-processed using a standardized protocol, under

the direction of the ADNI Biomarker Core [12]. For analyses

of change in CSF biomarkers, samples from baseline and 12-

month follow-up were batch-processed together. CSF mea-

sures of Ab42 and tau were considered. Amyloid deposition

was measured using 11C Pittsburgh compound B (PIB)

PET imaging (available at: http://www.loni.ucla.edu/twiki/
bin/view/ADNI/ADNIPostProc). The average standard up-

take value ratio across the anterior cingulate, parietal, precu-

neus, and frontal regions was used as a measure of cortical

amyloid burden. Each regional standard uptake value was

normalized to the cerebellum standard uptake value to get

the standard uptake value ratio. Metabolism was assessed us-

ing 18F fluorodeoxyglucose (FDG-PET) uptake, and struc-

tural changes were measured by MRI. Additional details of

the ADNI protocols for PET and MRI acquisition and stan-

dardization are publicly available on the UCLA Laboratory

of Neuroimaging Web site (http://www.loni.ucla.edu/ADNI/
Data/index.shtml). Standardized images were subsequently

analyzed by ADNI laboratories to produce summary mea-

sures. A subset of measures from the three FDG-PET pro-

cessing laboratories and from three of the six MRI

processing laboratories was considered as potential imaging

markers. The FDG-PET measures include a measure of aver-

age glucose metabolism across the left and right angular, left

and right temporal and posterior cingulate regions (ROI-avg)

[13], a measure of spatial extent of hypometabolism defined

by the sum of Z-scores more than 2 standard deviations below

the normal mean using stereotactic surface projection analy-

sis normalized by pons (SumZ2PNS and SumZ2PR), and

a data-driven functional ROI (DD-fROI) [14]. The MRI mea-

sures include hippocampal and ventricular volumes mea-

sured using FreeSurfer [15], boundary shift integral, and

ventricular boundary shift integral [16], and a data-driven

measure of temporal lobe atrophy (DD-ROI) [17]. Apolipo-

protein E genotype was determined by the ADNI Biomarker

Core. Four cognitive performance tests were considered for

measurement of longitudinal change: the Mini-Mental State

Examination (MMSE), the Clinical Dementia Rating Sum

of Boxes (CDR-SB), the Rey Auditory-Verbal Learning

Test (RAVLT) total of five trials, and the Alzheimer’s Dis-

ease Assessment Scale-cognitive subscale (ADAS-cog).

The Functional Activities Questionnaire (FAQ) was used as

http://www.loni.ucla.edu/twiki/bin/view/ADNI/ADNIPostProc
http://www.loni.ucla.edu/twiki/bin/view/ADNI/ADNIPostProc
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a measure of daily function. For participants classified as

MCI at baseline, time from baseline to first diagnosis of

AD was considered as time to conversion or if conversion

did not occur by the last clinical examination the time to con-

version was defined to be censored (i.e., to occur at an un-

known point beyond the end of the study).
2.3. Statistical analysis

The primary analytic goals were to characterize longitudi-

nal trajectories of change and their variation in each of the

measures of interest, to test systematically an a priori set of

hypotheses about the predictors of change in the NC, MCI,

and AD groups, and to assess the potential for improving

the efficiency of clinical trials. There were three main cate-

gories of imaging summary measures: single number sum-

maries that captured change between two scans, summary

measures calculated separately for each scan, and summaries

from data-driven voxel-based techniques. The data-driven

methods used a training-set, test-set approach to develop op-

timal ROI. These optimal ROIs were generated from the

training dataset for a particular imaging technique/processing

method by comparing baseline to follow-up scans and thresh-

olding at a particular P value. The supra-threshold regions

were then used as data-generated ROIs that were applied to

an independent test dataset. Although there are issues in us-

ing P value thresholds to generate optimal ROIs in this man-

ner, the optimal pattern was found to be robust to the choice

of threshold value [17]. For summaries calculated separately

for each scan, annualized change was estimated through the

two-point differences divided by the time (in years) between

the scans. These annualized change measures were used to

compare across markers and across diagnostic groups.

To test hypotheses about predictors of change in either an

imaging or cognitive outcome, the baseline and all follow-up

assessments for a given subject were used to give added in-

formation about between and within subject variation. Ran-

dom effects repeated-measures models were fitted [18]

separately for each diagnostic group. We began with univar-

iate models in which each predictor’s effects on baseline level

and rate of change per year were assessed. Next, we exam-

ined the joint effects of selected CSF, PET, and MRI mea-

sures (for ADAS-cog), on baseline level and rate of change

in models also including years of formal education (centered

at 12) and an indicator for presence of one or more APOE 34

alleles. In these joint models, all biomarkers were trans-

formed to Z-scores centered at the mean in the NC and scaled

to the SD for the NC. Thus, a one-unit change in the bio-

marker corresponds to an increase or decrease of 1 SD among

the NC. Assumptions of the models were assessed and were

met by the data.

Predictors of time to conversion to AD from MCI were as-

sessed using an interval-censored accelerated failure time

model [19]. Initial models considered only one biomarker

at a time to assess its association with time to conversion.

Multivariate models were then built using variables that
were associated with conversion in the univariate models at

P , .15. Ridge regression [20] was used to shrink coeffi-

cients for weaker effects. Model fit was assessed by compar-

ing estimates of the accelerated failure time estimated

survival curves with nonparametric maximum likelihood

estimates of survival [21], analogous to Kaplan–Meier

estimates appropriate for interval censored data.

Potential for improving clinical trials was assessed by

comparison of precision of the measurement for capturing

change in a clinical trial. Precision is closely associated

with sample size calculations. Therefore, sample sizes re-

quired to detect a 25% reduction in annual rate of decline

were calculated for a two-arm, 1-year clinical trial with

80% power. To compare across markers, we computed

subject-specific measures of precision, by calculating the

squared deviation from the mean change and dividing it by

the square of the mean change. The square root of this value

was used in our analyses, which were restricted to individuals

for whom complete data (across all imaging biomarkers)

were available and who were assigned to the independent

test set for the data-driven measures. Friedman’s rank test

was used to test the hypothesis that the precision was the

same across all measures. If this global test was found to

be significant, post hoc pairwise tests adjusted for multiple

comparisons were performed. Clinical trial designs with en-

try restricted to people with biomarker levels worse than

a cut-off value predictive of more rapid decline were also

considered.

All significance tests were at level .05 and all analyses car-

ried out in SAS [22] and R [23].
3. Results

The study sample included 210 NCs, 357 MCI, and 162

AD subjects with baseline and at least one cognitive

follow-up assessment. Of these, 83 NCs, 175 MCI, and 76

AD had serial PET images including baseline and month

12 (47 NCs, 89 MCI, and 38 AD in the independent test

set), and 96 NCs, 155 MCI, and 74 AD subjects had baseline

and month 12 CSF measures. Sample sizes for the measures

from the serial MRI depended on the different laboratories

generating data, so measures were available for 178–200

NCs, 297–334 MCI, 132–147 AD (123 NCs, 196 MCI,

86 AD in the independent test set). A total of 14 NCs, 40

MCI, and 11 AD subjects had two PIB scans approximately

12 months apart as part of the PIB add-on study.
3.1. Annualized change in CSF, imaging, and cognitive
tests

Table 1 shows the mean and SD of annualized change for

key summary measures. The rate of change for measures hy-

pothesized to show early change (CSF, PIB) is greater in NC

than in AD, with MCI intermediate. For the measures hypoth-

esized to change later in the course of AD development, how-

ever, the rate of change is greatest in AD and less in NC than



Table 2

Predictors of longitudinal change in hippocampal volume (Freesurfer), based

on repeated measures regression models, showing results for coefficient of

effect on annual change

Univariate model Joint model

Predictor of change/y Coefficient P value Coefficient P value

Normal controls

APOE 341 212 .095 227 .082

Yrs of education 1.1 .36 0.85 .68

CSF Ab42 0.25* .001* 6.1 .38

CSF tau 20.35* .031* 26.6 .40

FDG-PET ROI-avg 13 .72 5.4 .34

Mild cognitive impairment

APOE 341 232* ,.001* 236* .002*

Yrs of education 1.9* .040* 22.7 .12

CSF Ab42 0.26* ,.001* 20.66 .91

CSF tau 20.31* ,.001* 24.4 .15

FDG-PET ROI-avg 78* .005* 9.3* .026*

Alzheimer’s disease

APOE 341 215 .087 229 .18

Yrs of education 0.37 .79 23.4 .18

CSF Ab42 0.45* .002* 21.3 .92

CSF tau 20.22* .031* 28.7* .046*

FDG-PET ROI-avg 18 .73 10.2 .75

NOTE. Univariate models were not adjusted for other predictors; joint

models included APOE 34 status (any E4 allele), education, baseline CSF

Ab42 and Tau, and FDG PET ROI-avg unless otherwise specified. In the joint

models, all markers were transformed to Z-scores using the mean and stan-

dard deviation in the normal controls.

* Predictors significant at .05.
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in MCI (FDG-PET, MRI, cognitive measures). These esti-

mates are helpful to us in study design and power calculations

for future studies.

3.2. Longitudinal models predicting trajectories for
change in hippocampal volume

In univariate analyses, lower baseline values of CSF Ab42

and higher values of CSF tau were associated with more rapid

hippocampal atrophy in all three participant groups (Table 2).

In addition, in the MCI group, presence of an E4 allele, less

years of education, and lower metabolism as measured by the

ROI-avg region were also associated with more rapid atro-

phy. Multivariate analyses, however, suggested that some

variables might not predict independently, although it should

also be noted that the sample size was reduced considerably,

typically by three quarters, when individuals were required to

have data on all predictors. For NC, no single variable was

a significant predictor of hippocampal decline when all vari-

ables were included in the same model, although the coeffi-

cients were generally in the expected direction. The typical

E42 MCI participant experienced hippocampal atrophy at

a rate of 33 mm3 per year, on average. MCI who were

E41 had estimated hippocampal atrophy approximately

twice as fast as those who were E42, other variables being

equal. An MCI participant with baseline PET ROI-average

score one NC-SD better than the average MCI had atrophy

about 30% less rapid than an average MCI participant.

Among the AD group, the typical E42 participant lost 68

mm3 per year in hippocampal volume. Every one NC-SD

higher baseline CSF tau level was associated with nearly

a 30% faster hippocampal atrophy rate. Taken together, these

findings suggest that abnormal values of the CSF biomarkers

are indeed associated with more rapid atrophy, in all diagnos-

tic groups. Our findings are limited, however, by the fact that

only half of the participants had PET and half had CSF bio-

markers, and thus only 25% had both. Further analysis with

the larger samples and longer follow-up of ADNI-2 is needed

to determine whether the lack of significance in multivariate

analyses reflects mediation or partial mediation through other
Table 1

Mean (standard deviation) of annualized change for selected ADNI variables

Annualized mean change by diagnosis

Variable name NC MCI AD

CSF Ab42 20.94 (18) 21.4 (17) 20.1 (14)

CSF Tau 3.45 (13) 2.34 (21) 1.24 (24)

PIB 0.098 (0.18) 20.008 (0.18) 20.004 (0.25)

FDG-PET: SumZ2PNS 2177 (1532) 752 (2950) 2993 (4040)

FDG-PET: ROI-avg 20.006 (0.06) 20.015 (0.064) 20.055 (0.067)

FDG-PET: DD-fROI 20.019 (0.037) 20.047 (0.030) 20.081 (0.047)

Hippocampus 240 (84) 280 (91) 2116 (93)

Ventricles 848 (973) 1551 (1520) 2540 (1861)

ADAS-cog total 20.54 (3.05) 1.05 (4.40) 4.37 (6.60)

MMSE 0.0095 (1.14) 20.64 (2.5) 22.4 (4.1)

CDR-SB 0.07 (0.33) 0.63 (1.16) 1.62 (2.20)

RAVLT 5-trial total 0.29 (7.8) 21.37 (6.6) 23.62 (5.6)
processes, or is due to the small sample sizes available in

ADNI-1 to study all markers simultaneously.

3.3. Longitudinal models predicting trajectory of change
in ADAS-cog scores

In Table 3, we examined prediction of change in the

ADAS-cog total score. ADAS-cog increases, representing

cognitive impairment, were associated in the NCs with

smaller baseline hippocampal volume, in univariate models,

and with presence of APOE 34 in the joint model. In the MCI

group, lower baseline CSF Ab42, higher tau, lower FDG-PET

metabolism, smaller baseline hippocampal volume, and

larger ventricles were all associated with more rapid cogni-

tive function worsening, in univariate models. The typical

E42 MCI participant with marker levels comparable with

an average NC had an estimated increase of half a point per

year ADAS-cog score. In joint models, only the FDG-PET

measure remained significant, and each one NC-SD worse

metabolism was associated with a .40 point faster annualized

rate of worsening on the ADAS-cog. Among AD patients,

a typical reference person had an average increase of 2 points

per year in ADAS-cog; higher CSF tau was associated in uni-

variate models with faster ADAS-cog decline, but not after

adjusting for covariates. Lower baseline metabolism, how-

ever, remained significantly associated, with each one NC-

SD worse metabolism associated with a two-point worse an-

nualized rate of cognitive performance decline. Results for
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other cognitive outcomes and FDG-PET and MRI summaries

are in general agreement (not shown).

3.4. Predictors of time to conversion from MCI to AD

A third set of univariate and multivariate analyses exam-

ined predictors for conversion from MCI to AD. Table 4

shows results from survival models for time to conversion;

we examined not only fluid and imaging biomarkers, but

also baseline cognitive function as a potential predictor,

and adjusted for whether participants were already taking

cholinesterase inhibitors. Univariate models (not shown)

suggested that many baseline fluid and imaging biomarkers

were associated with shorter time to conversion, including

hippocampal and ventricular volume and brain size; complex

summaries of FDG-PET hypometabolism from the Univer-

sity of Utah; and the P-tau/Ab42 ratio. In addition, baseline

cognition and functional measures were predictive. People

who were on acetylcholinesterase inhibitors were also more

likely to convert. Multivariate analyses showed that only ace-

tylcholinesterase inhibitors (ACHEI), cognition, and func-

tion achieved statistical significance when all variables

were included, suggesting that most of the effect of the
Table 3

Predictors of longitudinal change in ADAS-cog total 11 score, based on

repeated measures regression models, showing results for coefficient of

effect on annualized change

Univariate model Multivariate model

Predictor of change/yr Coefficient P value Coefficient P value

Normal controls

APOE 341 0.22 .22 1.06* .020*

Yrs of education 20.04 .19 20.026 .64

CSF Ab42 20.0005 .82 0.10 .63

CSF tau 0.001 .75 0.33 .19

FDG-PET ROI-avg 21.9 .076 0.05 .77

Hippocampal volume 20.0004* .016* 20.25 .27

Ventricular volume 0.000006 .45 0.18 .31

Mild cognitive impairment

APOE 341 0.83 .005 0.57 .24

Yrs of education 20.01 .82 20.004 .96

CSF Ab42 20.01* ,.001* 0.058 .83

CSF tau 0.01* ,.001* 0.20 .16

FDG-PET ROI-avg 24.2* ,.001* 20.40* .040*

Hippocampal volume 20.001* ,.001* 20.014 .94

Ventricular volume 0.00005* ,.001* 0.38 .070

Alzheimer’s disease

APOE 341 0.85 .30 20.39 .82

Yrs of education 0.17 .15 0.050 .79

CSF Ab42 20.01 .26 21.39 .12

CSF tau 0.02* .04* 0.43 .17

FDG-PET ROI-avg 214* ,.001* 22.12* .005*

Hippocampal volume 0.0002 .79 20.08 .90

Ventricular volume 20.000002 .95 0.43 .47

Univariate models were not adjusted for other predictors; joint models in-

cluded APOE 34 status (any E4 allele), education, baseline CSF Ab42 and Tau,

FDG PET ROI-avg, and hippocampal and ventricular volume (Freesurfer)

unless otherwise specified. In the joint models, all markers were transformed

to Z-scores using the mean and standard deviation in the normal controls.

* Predictors significant at .05.
biomarkers on conversion can be explained through the base-

line cognitive and functional scores. When cognitive and

functional scores and redundant brain volumetrics were re-

moved, hippocampal volume and FDG-PET hypometabo-

lism were significant.
3.5. Precision of imaging markers and implications for
clinical trials

Finally, we examined the potential of the fluid and imag-

ing biomarkers to improve clinical trials in several different

ways. We considered the possibility that they might be

used as outcome measures, and calculated the sample size

that would be required in a two-arm, 1-year clinical trial,

with 80% power to detect a 25% improvement in annual

rate of decline. Fig.1. shows the results of the comparisons

of sample size estimations for a trial in MCI subjects across

the most promising MRI and PET biomarkers based on

data obtained from 69 MCI subjects. Each different shade

in the Figure identifies a group of measures that were not sig-

nificantly different from one another. In particular, measures

of brain change and hippocampal atrophy required the fewest

subjects. The data-driven functional ROI required the fewest

subjects out of the PET measures and was comparable with

many of the top MRI measures.

An alternative strategy for improving clinical trial design

is enrichment of the study population. A trial restricting par-

ticipation to an enriched MCI population with CSF Ab to less

than 192 pg/mL would only require 225 per group to detect

a 25% reduction in rate of change in ADAS-cog, whereas

an unrestricted study would require 375 people per arm.

These sample sizes are based on linear mixed effects models

of rate of change over 2 years of visits every 6 months, and

simulations that replicate ADNI’s missing data.
4. Discussion

The first 12 months of complete data on ADNI participants

demonstrated the potential for substantial advances in charac-

terizing trajectories of change in a range of biomarkers and

clinical outcomes, examining their relationship and timing,

and assessing the potential for improvements in clinical trial

design. Entry criteria for the ADNI, NC, MCI, and AD groups

were well defined and yielded groups that were distinctly dif-

ferent not only in their initial characteristics, but also in their

average trajectories across a range of CSF, PET, MRI, and

clinical measures. These findings were consistent with the

previous published data reporting that the onset and progres-

sion of neurobiological changes precedes (by a considerable

time) the actual diagnosis of AD [24,25]. The levels and rates

of change of CSF, PET, and MRI summary measures showed

considerable variation within diagnostic group, with

substantial overlap between the NC and the MCI groups,

and between the MCI and AD groups. One possible

explanation of the high degree of variation is the presence

of different degrees or types of underlying neuropathology



Table 4

Results of survival models for time to conversion from MCI to AD

Predictor variable Coefficient P value P value*

Entire MCI cohort with MRI

Baseline ADAS-cog 20.101y .002y

Baseline FAQ 20.092y .002y

Using ACH El 20.060y .046y

Baseline hippocampus 0.058 .078 .003y

Baseline MMSE 0.053 .083

MCI cohort with MRI, FDG PET

Baseline FAQ 20.073y .043y

Baseline ADAS-cog 20.074 .059

Baseline hippocampus 0.070 .070 .025y

Baseline FDG-PET ROI-avg 0.071 .091 .015y

MCI cohort with MRI, CSF

Baseline FAQ 20.118y .015y

Using ACH El 20.090 .055

Baseline ADAS-cog 20.091 .065

Table shows predictors that had P values less than .10 in model. Ridge re-

gression used to shrink coefficients for smaller values. The rightmost column

(P value*) displays P values from models excluding all clinical variables.
y Results significant at .05.
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among participants with the same clinical classification;

consistent with this idea, reduced metabolism and greater

brain atrophy in the MCI at baseline are associated with

more rapid cognitive decline and a higher chance of

conversion to AD. Results from univariate regression

models confirmed that cognitive decline in MCI was

associated with several biomarkers. Multivariate models

suggested that they are likely not operating independently

but instead may either represent part of a sequence in

which some mediate others at least in part, or may reflect

several aspects of a common progression of underlying

neurobiological damage. The moderate number of people

with data on all markers limited the power of multivariate

models. Larger sample sizes, especially of people with all

modalities of fluid and imaging biomarkers, and longer

follow-up are critical in determining relative contributions

at different disease stages. In particular, cognitive decline in

the NCs is subtle and requires larger sample sizes and longer

follow-up to separate out effects of different risk factors.

Results in AD suggest that the hypothesized later changes
Lab Modality Variable
Jagust PET ROI-avg
Foster PET logSumZ2P
Foster PET logSumZ2P
Fox MRI VBSI2
Schuff (FreeSurfer) MRI ventricle
Reiman PET DD – fRO
Schuff (FreeSurfer) MRI hippocamp
Fox MRI BSI4
Thompson MRI DD - RO

Fig. 1. 1.5T MRI vs. PET sample size calculations and comparisons: MCI (69 tes

sample size did not differ significantly under multiple-comparison testing.1 5 Meas

shift integral as a percentage of baseline brain volume; 3 5 data-driven summaries

baseline brain volume.
are likely to play more of a role as predictors than those

thought to take place earlier in the disease process. A related

possibility is that the longer-term trajectory of biomarker

measures may be nonlinear, with some measures showing

a steeper rate of change at later stages of disease progression

and some at earlier stages. Testing this hypothesis properly

will require longer follow-ups than are currently available,

to assess within-individual shifts in rates of change. Finally,

some measures clearly have more between-person and

within-person variation than others. Comparisons of the pre-

cision of estimated rates of change identified several promis-

ing MRI and FDG-PET measures. These measures have

sufficiently stable rates of change that the sample size for

a two-arm clinical trial in MCI or AD using the marker as

a surrogate endpoint could be reduced considerably, com-

pared with the standard cognitive outcomes. Alternatively,

designs using biomarkers to restrict entry to those most likely

to decline could improve power of clinical trials even using

cognitive scores as the primary outcome measure.

Our findings are broadly consistent with other studies.

Analysis of a smaller subset of ADNI participants with data

on multiple biomarkers reported that PET and CSF bio-

markers of Ab agreed with each other but were not correlated

with cognitive impairment, whereas FDG-PET was more

strongly related to cognition and less to other biomarkers

[26]. Volumetric changes have been noted to be present

even over 6 months to a year in ADNI patients [27]. Numer-

ous studies have noted that baseline levels of biomarkers pre-

dict cognitive change and incident AD in people with MCI

[8,25,28]. Uniform ascertainment of multiple measures in

large samples allowed us to carry out formal comparisons

across biomarkers, including those based on ROI that were

developed by data-driven methods. The large sample avail-

able to ADNI may have permitted detection of more moder-

ate associations than would have been possible with smaller

samples in other reports, and also allowed use of more predic-

tors in multiple regression models with either change in cog-

nitive function or time to AD diagnosis as the outcome.

Our analysis of ADNI data has several notable limitations.

First, follow-up is limited to 12 months for the CSF and many

of the imaging summary measures, and to 2 years on average
Sample Size
4605

NS1 2176
R1 1629

284
s 277
I3 249
us 202

177
I3 73

t subjects). Grey-scale bars connect groups of variables for which calculated

ures of glucose hypometabolism, log transformed; 2 5 ventricular boundary

applied to independent test set; 4 5 boundary shift integral as a percentage of
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for clinical outcome data. Many of the questions of greatest

interest involve sequences or shifts in the degenerative pro-

cess, and thus require longer-term follow-up for definitive

analysis. Second, although ADNI as a whole includes more

than 800 participants, the sample size for CSF, FDG-PET,

PIB, and most notably any combination, is substantially

smaller. Third, the study is not population-based; ADNI par-

ticipants are better educated and less ethnically diverse com-

pared with the population as a whole. Fourth, the study

recruitment strategy deliberately focused on three well-

defined clinical subgroups, but thus omitted people with,

for example, early MCI. Finally, the analyses presented in-

clude only a very limited, pre-specified subset of the many

potential PET and MR imaging summary measures and the

detailed cognitive and performance test data collected for

ADNI participants.

This broad perspective on ADNI findings thus far, how-

ever, has notable strengths. We present an overview of key

findings across CSF, PET, and MRI domains, and across mul-

tiple cognitive function and clinical progression outcomes.

Our analyses have gained strength from having a large sample

size of people from more than 50 sites with clear, consistent,

clinical entry criteria. All biomarker and clinical data were

collected and processed with uniform standard criteria. We

used a systematic approach to model building and hypothesis

testing, reflecting the careful specification of study goals in

the original ADNI proposal, to address the challenges posed

by the multiplicity of potential biomarkers of interest.
5. Summary

Analyses and comparisons of ADNI data strongly support

the hypothesis that measurable change occurs in CSF, PET,

and MR images well in advance of the actual diagnosis of

AD. Even in the first 2 years of follow-up, distinct patterns

of glucose hypometabolism and hippocampal atrophy, in par-

ticular, are associated with increased rates of cognitive de-

cline and with greater risk of conversion from MCI to AD.

These changes can be measured with sufficient precision to

suggest potential as surrogate markers in clinical trials, pro-

vided they are able to capture the effects of treatment on clin-

ical outcomes. More detailed analysis of the rich ADNI

database is clearly warranted as well as extension with longer

follow-up, more complete CSF and PET participation, and

examining the critical transition between NC and MCI.
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